Диплоидный набор хромосом характерен для. Что такое хромосома. Гаплоидный и диплоидный набор хромосом. Возможные нарушения в кариотипе

Хромосома: понятие, диплоидный и гаплоидный хромосомные наборы

Дети получают в наследство от родителей не только материальное имущество, но и определенные гены, которые делают их похожими на родственников формой головы, лица, рук, цветом глаз и волос, а иногда даже характером.

Передача характерных признаков от родителей к детям происходит с помощью информации, закодированной в дезоксирибонуклеиновой кислоте (ДНК). Вся биологическая информация хранится в хромосомах, представляющих собой молекулы ДНК, покрытые гистонной (белковой) оболочкой. В зависимости от типа клетки и ее фазы жизненного цикла генетическая информация в виде хромосом может находится в нескольких вариантах: гаплоидном, диплоидном и, реже, тетраплоидном.

Понятие хромосомы

Ядро эукариотической клетки содержит несколько видов составляющих, одной из которых является нуклеопротеидная структура, называемая хромосомой. Теория о наследственной информации впервые была выдвинута еще в XIX веке, но, опираясь на фактические данные, полностью сформировалась лишь спустя столетие,.

С помощью ДНК происходит хранение, реализация и передача наследственной информации. Различить хромосомы под микроскопом возможно только во время деления клетки. Совокупность всех структурно-функциональных единиц, содержащихся в клетке, называется кариотипом.

Нуклеопротеидные структуры, хранящие наследственную информацию, у эукариотов расположены в ядре, а также в митохондриях и пластидах; у прокариотов замкнутая в кольцо молекула ДНК располагается в так называемой зоне нуклеоида. У вирусов, единственных в своем роде, роль носителя генетической информации может выполнять как ДНК, так и РНК (рибонуклеиновая кислота), расположенные в белковых оболочках — капсидах.

Обычно генетическая информация в клетке содержится в единичном экземпляре, это состояние называют гаплоидным набором. При делении клетки ДНК реплицируется, то есть удваивается, чтобы каждая молодая клетка получила полноценный генетический набор. Данное состояние хромосом называется диплоидным. Реже, при формировании половых клеток (яйцеклеток и сперматозоидов), при образовании спор и конидиев в жизненных циклах низших растений и грибов, а также при генетических аномалиях в клетке может находится учетвереннвй набор генетической информации — тетраплоидный.

Диплоидный хромосомный набор

Диплоидный набор хромосом — это двойной кариотип, в котором элементы разделены на пары по сходным признакам. Такой набор наблюдается в соматических клетках и зиготах.

В человеческих клетках содержится по 46 хромосом, которые разделяются на 23 пары со своим «двойником» по длине и толщине. Но 45-я и 46-я единицы отличаются от других тем, что представляют собой половые хромосомы, определенное сочетание которых влияет на пол будущего человека:

  • пара одинаковых единиц— XX — приведет к рождению ребенка женского пола;
  • две разные единицы — XY — к рождению мальчика.

Остальные структуры называются аутосомами.

Гаплоидный набор хромосом

Гаплоидный хромосомный набор представляет собой одинарный набор структурно-функциональных единиц, которые отличаются друг от друга по размеру. В гаплоидных кариотипах содержится 22 аутосомы и 1 половая структура. Ядра с одинарным набором элементом имеют растения, водоросли и грибы.

Диплоидный и гаплоидный кариотипы могут существовать в одно время. Такое явление наблюдается при половых процессах. В этот период происходит чередование фаз гаплоидного и диплоидного наборов: с делением полного набора происходит образование одинарного кариотипа, а затем происходит слияние пары одинарных наборов, которые преобразуются в диплоидный кариотип.

Возможные нарушения в кариотипе

В период развития на уровне клеток имеет возможны сбои и нарушения в работе хромосом. При изменениях в хромосомных наборах у человека возникают генетические заболевания. Известными болезнями с нарушением кариотипа являются:

  1. Синдром Дауна. Заболевание характеризуется сбоем в 21-й паре структурно-функциональных единиц, к которым примыкает абсолютно такая же дополнительная хромосома. Гомологичный элемент является лишним и приводит к аномалии, которую называют трисомией. С нарушением 21-й пары диплоидного набора плод может отстать в развитии и погибнуть. Если ребенок рождается, то нарушение в клетках приведет к сокращению будущей жизни малыша. В умственном развитии он будет отставать. К сожалению, этот синдром неизлечим.
  2. Синдром Шерешевского-Тернера. При этой болезни отсутствует одна из половых структур в 23-й паре кариотипа. У людей с этим синдромом наблюдаются характерные аномалии в физическом развитии, низкорослость и половой инфантилизм.
  3. Синдром Эдвардса. Трисомия 18-й хромосомы, сформировавшаяся до оплодотворения, приводит к хромосомному заболеванию, характеризующемуся совокупностью пороков развития.
  4. Синдром Патау. Тяжелому врожденному заболеванию свойственно число деформаций тела, которые происходят из-за появления в клетках дополнительной 13-й хромосомы. Обычно малыши с таким синдромом проживают всего несколько недель, но отмечены случаи, когда родившиеся с неизлечимым пороком дети проживали несколько лет.
  5. Синдром Клайнфельтера. Наследственная болезнь, наблюдаемая у мужского пола, может проявляться полисомией в разных вариантах, но чаще всего происходит присоединение второй X-элемента к паре XY, вследствие чего образуется схема XXY. Наличие аномалии в хромосомном наборе приводит к нарушениям в половой системе и умственном развитии, а также к системным заболеваниям человеческого организма.

Поскольку ученые еще не нашли способы защиты клеток от нарушений в кариотипах, хромосомные изменения приводят к неизлечимым болезням, при которых наблюдаются низкая степень жизнеспособности, отклонения в умственном и половом развитии, задержка роста.

С помощью многочисленных исследований ученые установили, что на изменения в хромосомных наборах воздействует влияние экологии, плохой наследственности, дефицита сна и неправильного образа жизни. Но нарушения могут встречаться и у людей, ведущих абсолютно правильный образ жизни и не страдающих никакими заболеваниями. На данный момент люди не могут влиять на изменения в кариотипах.

Эта видеоподборка поможет вам лучше разобраться в том, что такое хромосомный набор человека.

Диплоидный набор хромосом характерен для. Что такое хромосома. Гаплоидный и диплоидный набор хромосом. Возможные нарушения в кариотипе

Набор хромосом с любым их количеством, кроме 46, называется гетероплоидным. Количество хромосом, кратное гаплоидному (b), — эуплоидное, любое другое число хромосом — анеуплоидное.

Триплоидия и тетраплоидия

Кроме диплоидного (2n) набора хромосом, характерного для нормальных соматических клеток, встречаются два других эуплоидных хромосомных набора, триплоидный (3n) и тетраплоидный (4n), изредка наблюдаемые в клиническом материале. Как триплоидия, так и тетраплоидия обнаружены у плодов; и хотя триплоидные младенцы могут родиться живыми, долго они не живут. Триплоидия встречается в 1-3% всех зачатий; большинство среди тех, которые донашиваются до конца I триместра, вызвано оплодотворением двумя сперматозоидами (диспермией).

Часть случаев также может быть вызвана нарушением одного из мейотических делений, приводящим к образованию диплоидной яйцеклетки или сперматозоида. Фенотипическая манифестация триплоидного кариотипа зависит от источника дополнительного набора хромосом; триплоиды с дополнительным набором отцовских хромосом обычно имеют аномальную плаценту и классифицируются как частично гидатиформные беременности (пузырный занос), с дополнительным набором материнских хромосом — спонтанно прерываются на более ранних сроках беременности. Тетраплоиды — всегда 92,ХХХХ или 92,XXYY; отсутствие половых конституций XXXY или XYYY подсказывает, что тетраплоидия происходит вследствие неправильного завершения первых делений зиготы.

Анеуплоидия

Анеуплоидии — наиболее частый клинически значимый тип хромосомных нарушений у человека, наблюдаемый, по крайней мере, в 5% клинически распознанных беременностей. Большинство анеуплоидных пациентов имеют или трисомии (три хромосомы вместо двух в норме), или, реже, моносомии (только одна конкретная хромосома). Как моносомии, так и трисомии бывают с серьезными фенотипическими последствиями.

Трисомия может захватывать любую часть генома, но трисомия целой хромосомы редко совместима с жизнью. Наиболее частый тип трисомии у живорожденных младенцев — трисомия 21 (кариотип 47.ХХ или XY.+21), хромосомная конституция, наблюдаемая у 95% пациентов с синдромом Дауна. Другие трисомии, встречающиеся у живорожденных детей, — трисомия 18 и трисомия 13. Примечательно, что все эти три (13, 18 и 21) аутосомы — с самым низким числом генов; возможно, трисомии аутосом с большим числом генов в большинстве случаев детальны.

Читать еще:  Горечавка — лечебные свойства и противопоказания. Лекарственное растение горечавка желтая

Моносомия по целой хромосоме почти всегда летальна; важное исключение — моносомия хромосомы X, наблюдаемая при синдроме Тернера.

Хотя причины анеуплоидий до конца не понятны, известно, что наиболее частый механизм их образования — нерасхождение хромосом в мейозе. Это связано с неспособностью пары хромосом правильно разойтись в дочерние клетки в одном из делений мейоза, обычно в первом. Последствия нерасхождения в ходе первого и второго делений различны. Если ошибка происходит в течение первого деления мейоза, гамета с 24 хромосомами содержит в паре как отцовскую, так и материнскую хромосому.

Если же она происходит в ходе второго деления, гамета с дополнительной хромосомой содержит две одинаковые копии или отцовской, или материнской хромосомы. (Строго говоря, упомянутые утверждения относятся только к отцовской или материнской центромере, так как обычно в предыдущем делении мейоза между гомологичными хромосомами происходит рекомбинация, приводя к генетическим различиям между хроматидами и, таким образом, между соответствующими дочерними хромосомами).

Склонность хромосомной пары к нерасхождению сильно связана с отклонениями в частоте или положении рекомбинаций в первом делении мейоза. Хромосомная пара с малым числом рекомбинаций (или с их отсутствием), а также с рекомбинациями, расположенными слишком близко к центромере или теломере, более подвержена нерасхождению, чем хромосомная пара с типичным числом и распределением событий рекомбинации.

Дополнительно к классическому нерасхождению, когда неправильное разделение хромосом — результат нарушенного спаривания или рекомбинации, существует другой механизм, лежащий в основе анеуплоидий, — преждевременное разделение сестринских хроматид в мейозе I вместо мейоза II. Если это случается, разделенные хроматиды могут случайным образом расходиться в овоцит и полярное тельце, что также ведет к образованию несбалансированной гаметы.

Описаны также более сложные формы множественной анеуплоидий. Гаметы редко несут более одной дополнительной хромосомы. Однако если нерасхождение происходит сразу в двух делениях мейоза или одновременно как в мужских, так и в женских гаметах, это приводит к появлению чрезвычайно редко встречающихся зигот (за исключением половых хромосом) с необычным количеством хромосом. Нерасхождение также может происходить в митотическом делении уже после образования зиготы. Если подобное происходит в первых делениях зиготы, появляется клинически значимый мозаицизм.

В некоторых линиях злокачественных клеток и клеточных культурах митотическое нерасхождение может приводить к значительным аномалиям в кариотипе.

Большой вклад в диагностику анеуплоидий, особенно пренатальных, внесло использование многоцветной FISH в интерфазных клетках. Метод обеспечивает быструю диагностику без необходимости культивирования клеток. В настоящее время многие лаборатории пренатальной цитогенетики выполняют интерфазный анализ для выявления анеуплоидий хромосом 13, 18, 21, X и Y, т.е. тех пяти хромосом, которые участвуют в большинстве анеуплоидий у новорожденных.

Триплоидия

Что такое Триплоидия?

Хромосомы – это структуры в клетке, носители генов, в которых содержится наследственная информация. У здорового человека, не страдающего отклонениями, количество хромосом должно быть 46 (23 пары хромосом).

В яйцеклетке и сперматозоиде в норме содержится по 23 хромосомы (1 хромосома из каждой пары). Это называется гаплоидный набор хромосом. После слияния мужской и женской половых клеток образуется зигота (оплодотворенная яйцеклетка), и количество хромосом в ней удваивается и достигает 46 (23 от матери и столько от отца). Это диплоидный набор хромосом. Однако иногда встречаются нарушения в виде увеличения количества хромосомных наборов в одной клетке, что ведет к невозможности нормального функционирования организма и появлению неизлечимых болезней.

Триплоидия – это одна из наиболее частых спонтанных аномалий хромосомного набора в процессе эмбриогенеза и заключается она в том, что в клетках оказывается по 69 хромосом (не по 2, а по 3 хромосомы из каждой пары).

Плоды с триплоидией наследуют дополнительный набор хромосом от одного из родителей. К появлению этого отклонения могут привести два пути:

  • при оплодотворении в яйцеклетку проникает не один сперматозоид, как должно быть, а два. Каждый из них несет по одиночному набору хромосом (23 хромосомы) и также 23 хромосомы есть у яйцеклетки. В итоге, в ядре клетки оказывается 69 хромосом;
  • сперматозоид проникает в яйцеклетку, которая сама вследствие нарушения ее образования имеет 46 хромосом. В этом случае также получается 69 хромосом.

Триплоидия является смертельным состоянием. Подобные изменения хромосомного набора практически не встречаются среди живорождённых детей, так как приводят к серьёзнейшим нарушениям и чаще всего являются причиной внутриутробной гибели эмбриона на ранней стадии развития. В большинстве случаев происходит выкидыш в первом триместре или мертворождение. Те дети, которым удалось родиться живыми, умирают через несколько дней или недель, а те, кто смог пережить этот срок, будут иметь серьезные многочисленные врожденные дефекты. Они могут включать в себя замедление роста, пороки сердца, дефекты нервной трубки (расщепление позвоночника).

Наследственной предрасположенности к этой аномалии у человека нет, фактически она возникает случайно. Риск повторения триплоидии у одних и тех же родителей крайне низкий.

Виды триплоидии

Триплоидию можно разделить на два типа. При I типе дополнительный набор хромосом будет иметь отцовское происхождение, а при II типе дополнительный набор будет иметь материнское происхождение.

Дигиния (триплоидия материнского происхождения) характеризуется излишком материнских хромосом в кариотипе плода. Избыток материнских хромосом в кариотипе может образоваться из-за того, что в оплодотворенную яйцеклетку оказывается вовлеченным полярное тельце. Полярные тельца – это крохотные образования на поверхности яйцеклеток, также содержащие хромосомы. Проникновение такого образования внутрь оплодотворенной яйцеклетки может сказаться на малыше, передав ему лишний хромосомный комплект.

Синдром триплоидии также может развиться, если оплодотворение произошло через короткий промежуток времени после приёма противозачаточных средств или длительных менструальных циклов. Играет роль и возрастной фактор: чем старше женщина, тем выше риск возникновения этого заболевания.

Для материнской триплоидии характерен маленький размер плаценты и регресс в данном случае возникает потому, что тощая плацента не может достаточно обеспечивать большой плод.

К дефектам лица у плода при материнской триплоидии относятся широко расставленные глаза, низкая спинка носа, деформированные низко посаженные уши, маленькая нижняя челюсть, необычная форма черепа, заячья губа и /или расщелина в нёбе.

Дефекты туловища проявляются в деформации и сращивание пальцев на руках и ногах, аномалии половых органов, появлении отверстий в брюшной стенке. Внутренние органы также функционируют неправильно: недостаточно развиты надпочечники, возможна кистозность почек, врожденные дефекты сердца, пороки развития печени и желчного пузыря. Помимо всего прочего, наблюдается аномальное развитие мозга, умственная отсталость, дефекты нервной трубки (вплоть до роста головного или спинного мозга вне тела).

Аномалии развития плода могут быть заметны при проведении УЗИ уже на 12 неделе. Есть ряд признаков, по которым врач может прогнозировать возможные нарушения. Для материнской триплоидии характерны, прежде всего, ассиметричные задержки в развитии плода.

Отцовская триплоидия обусловлена слиянием яйцеклетки с двумя сперматозоидами (диспермией) или оплодотворением диплоидным сперматозоидом (диандрия), поэтому, в этих случаях, дополнительный набор хромосом будет иметь отцовское происхождение.

На УЗИ при таких отклонениях плацента будет казаться утолщенной с кистозными образованиями. Плод может быть нормальным или немного меньше нормы, в некоторых случаях можно обнаружить водянку у плода. Отцовская триплоидия связана с повышенным риском развития трофобластической болезни у матери. Трофобластическая болезнь — это доброкачественные и злокачественные новообразования, исходящие из клеток плаценты. Иногда трофобластическую болезнь называют «эмбриональный рак». К трофобластической болезни относятся пузырный занос, хориокарцинома и хорионэпителиома.

Пузырный занос – состояние, сопровождающееся разрастанием трофобласта (наружный слой клеток зародыша), заполняющего полость матки. Вместо развития плода в матке формируются кисты, напоминающие гроздья винограда.

Полный пузырный занос возникает, когда по неизвестным причинам происходит потеря материнских генов и дублирование отцовского генома. Иногда (в 5% случаев) полный пузырный занос вызван оплодотворением пустой (безъядерной) яйцеклетки двумя сперматозоидами. Первым клиническим признаком этого явления является несоответствие размеров матки сроку беременности: матка больше, чем должна быть по сроку. Макроскопически визуализируются отечные хориальные ворсинки, пузырьки. Эмбрион погибает на ранних стадиях развития, до установления плацентарного кровообращения.

Читать еще:  Для чего применяется крапива в гинекологии: рецепты, противопоказания. Крапива в гинекологии. Что нужно знать о её лечебных свойствах и противопоказаниях

Неполный (или частичный) пузырный занос вызван триплоидией, получившейся в результате оплодотворения яйцеклетки двумя сперматозоидами. Эти клетки содержат один набор материнских хромосом и двойной набор отцовских.

Пузырный занос — редкое заболевание и чаще встречается у повторнородящих в старше 35 лет. Заболевание характеризуется следующими симптомами, каждый из которых является показанием к госпитализации:

  • обильное кровотечение из половых путей и рождение пузырьков заноса;
  • размеры матки превышают норму, которая должна быть на соответствующем сроке неосложненной беременности;
  • отсутствие достоверных признаков беременности: плод не определяется при помощи ощупывания, ультразвукового исследования, сердцебиение плода не выслушивается и не регистрируется при аппаратном исследовании; — убрать! Мы должны выявить пузырный занос задолго до того, когда можно ощапать плод и выслушать сердцебиение
  • ранний токсикоз тяжелой степени (тошнота и чрезмерная рвота, слюнотечение, симптомы нарастающей печеночной недостаточности, истощение), анемии в связи с повторяющимися кровотечениями.

До появления клинических симптомов диагноз пузырного заноса устанавливается при ультразвуковом исследовании. Вместо нормальной структуры плодного яйца обнаруживается картина, получившая название «снежной бури». В яичниках определяются лютеиновые кисты. При исследовании гормонов отмечается высокий уровень хорионического гонадотропина (ХГЧ), иногда многократно превышающий норму для данного срока беременности.

При установленном диагнозе назначают операцию по удалению патологических наростов ткани, по-другому называемая «выскабливание полости матки». Иногда операцию приходится проводить повторно, чтобы полностью удалить остаток патологической ткани.

При неполном пузырном заносе необходимо проводить прерывание беременности даже при наличии живого эмбриона, поскольку прогноз для такой беременности все равно неблагоприятный – в недоношенном сроке беременности, пока плод еще не жизнеспособен, происходит самопроизвольное прерывание беременности, которое сопровождается массивным кровотечением, угрожающем жизни женщины. Довести такую беременность до доношенного срока и родить здорового ребенка невозможно.

После хирургического вмешательства нужно регулярно следить за уровнем содержания ХГЧ (хорионического гонадотропина человека) в крови. Если его уровень снижается, это говорит о том, что остатков хориальной ткани в матке не имеется. Однако только повторные результаты анализа могут дать уверенность в отсутствии пузырного заноса.

Опасность пузырного заноса заключается ещё и в том, что он может вызвать хориокарциному – форму рака, при котором плацентарная ткань перерождается в злокачественную. Данная патология наблюдается в одном случае из тридцати тысяч беременностей. Для её лечения назначают химиотерапевтические средства.

Методы выявления триплоидии

При материнской триплоидии ни биохимический скрининг, ни ультразвуковое исследование не может с точностью установить наличие триплоидии у плода. Однако уже на 12 неделе беременности УЗИ может выявить характерные для этого отклонения признаки:

  • частота сердечных сокращений ниже 120 ударов в минуту;
  • нарушение разделения головного мозга на отделы;
  • выворот органов брюшной полости в грыжевой мешок в области пуповины.

Важно отметить, что наличие этих маркеров не является диагнозом, достоверно подтверждающим наличие хромосомной патологии у плода. Если скрининг при беременности показывает высокий риск какой-либо патологии, женщине рекомендуют инвазивную диагностику. На сроке 11-14 недель это хорионбиопсия, в 16-20 недель амниоцентез, после 20 недели кордоцентез. Эти исследования помогают дать практически 100% верный ответ о генетическом «здоровье» плода. Минус заключается в том, что у 1-2% женщин в результате процедур может случиться выкидыш или различные осложнения течения беременности. Наиболее безопасным считается амниоцентез. Каждая пара сама решает — стоит ли проводить инвазивную диагностику. Если в ее результате будет выявлена хромосомная аномалия — женщине предлагают прерывание беременности.

Триплоидию вылечить невозможно и многие родители принимают в этом случае решение сделать аборт. Этот вариант наиболее гуманный по отношению к родителям и к плоду, так как полноценная жизнедеятельность при таком диагнозе невозможна, а ребёнок чаще всего живёт совсем недолго и имеет очень слабое здоровье. В случае отказа от аборта, если ребёнок выживет, специалисты будут применять только поддерживающие методики лечения, чтобы по возможности улучшить качество его жизни.

Безопасный и высокоточный тест Panorama — неинвазивный пренатальный ДНК тест (НИПТ) практически также эффективно, как и инвазивная диагностика, выявляет распространенные генетические болезни плода, в том числе и триплоидию. Тест Panorama способен выявить хромосомные аномалии на довольно раннем сроке беременности – с 9 недель. Ещё один положительный момент – данная диагностика абсолютно безопасна как для матери, так и будущего ребенка. Сама процедура сдачи теста очень проста – осуществляется забор крови из вены у матери. С помощью особых технологий и алгоритмов в полученном материале производят разделение ДНК плода и матери. Выделенная ДНК плода проходит специальный анализ на компьютере, по результатам которого определяется персональный уровень риска хромосомных патологий.

Определение триплоидии с помощью НИПТ – клинически важная задача. Раннее выявление этого хромосомного отклонения позволяет осуществлять пристальный медицинский контроль и уход за пациенткой.

Прогнозы после беременности с триплоидией

В некоторых случаях, как при материнской, так и при отцовской триплоидии может произойти регресс беременности. Если вы столкнулись с неразвивающейся беременностью или у вас произошел самопроизвольный выкидыш, то всегда возникает вопрос, почему это случилось,

и что следует предпринять, чтобы это не повторилось.

Чаще всего абортивный материал направляют на гистологическое исследование, который помогает определить наличие предракового состояния или рака.

Триплоидия выявляется в результате генетического исследования абортуса (недоразвитый плод, полученный в результате самопроизвольного или искусственного аборта) с помощью кариотипирования.

Однако обычное кариотипирование, хоть и может определить числовые аномалии хромосом, в том числе триплоидию, не позволяет определить происхождение дополнительного набора хромосом, то есть произвести идентификацию триплоидии материнской или отцовской. Кроме того, при оплодотворении «пустой» яйцеклетки двумя сперматозоидами кариотип может определить хромосомный набор как нормальный диплоидный. Поэтому кариотипирование невозможно использовать для диагностики пузырного заноса.

Стоит отметить, что дифференцировать материнскую и отцовскую триплоидии при планировании следующей беременности крайне важно, так как дигиническая (материнская) триплоидия несёт за собой низкий риск повторного возникновения данной аномалии и осложнений у женщины, а диандрическая (отцовская) и наличие частичного пузырного заноса может представлять собой серьезную угрозу развития онкологической патологии.

Существует эффективное решение проблемы – молекулярное кариотипирование «ОПТИМА», которое позволяет точно определить наличие хромосомной патологии плода. В отличие от анализа кариотипа, тест «ОПТИМА» определяет все виды триплоидий.

Тестирование абортивного материала производится на специальном оборудовании с применением улучшенного биоинформатического алгоритма, который дает возможность определить происхождение отклонений (отцовское или материнское), а также определить точный размер и генетические координаты дисбаланса. Эта информация может стать весьма ценной для супружеской пары при определении дальнейших шагов.

Планирование беременности после триплоидии необходимо обсудить со специалистом после рассмотрения результатов теста «ОПТИМА» или кариотипирования. Врач даст все необходимые рекомендации и подскажет оптимальные сроки для наступления следующей беременности. Следует помнить, что триплоидия – аномалия, которая образуется, как правило, случайным образом, поэтому у пары, столкнувшейся с этой проблемой, есть все шансы на появление в семье здорового малыша.

Справочник химика 21

Химия и химическая технология

Диплоидный набор хромосом

В каллусных и суспензионных культурах встречаются клетки, имеющие диплоидный набор хромосом, свойственный исходному растению, полиплоидные клетки, содержащие 3,4,5 и более хромосомных наборов. Наряду с полиплоидией в культуре каллусных тканей можно нередко наблюдать анеуплоидию (возрастание или уменьшение хромосомного набора на несколько хромосом). Чем длительнее культивировать каллусные клетки, тем больше они различаются по плоидности. В каллусных клетках табака через четыре года культивирования совсем не остается диплоидных клеток все клетки становятся полиплоидными или анеуплоидны-ми. Этот факт указывает на то, что изменение плоидности происходит под влиянием условий культивирования и прежде всего входящих в со- [c.88]

Читать еще:  Депрессия и спорт. Физические упражнения могут помочь при депрессии

Подытожим параллели между хромосомами и менде-левскими единицами наследования. Гены встречаются в аллельных парах-по одному аллелю от каждого родителя в каждой паре диплоидный набор хромосом образуется из двух гаплоидных родительских наборов. Распределение неаллельных генов в гаметах происходит независимо негомологичные хромосомы подвергаются независимой сегрегации. Критическое условие, заключающееся в том, чтобы каждая гамета получала полный гаплоидный набор, выполняется независимо от того, рас- [c.12]

В мейозе у гибридов хромосомы от каждого родительского растения не могут конъюгировать с образованием гомологичных хромосом, поэтому гибриды стерильны. Иногда в результате нерасхождения гибриды Р, дают гаметы с диплоидным набором хромосом (2п = 18). [c.336]

Уменьшение диплоидного набора хромосом в 2 раза [c.205]

Слияние двух половых клеток при оплодотворении приводит к образованию клетки — зиготы, содержащей уже диплоидный набор хромосом — но одному от обоих родителей. [c.11]

В результате такого деления возникают новые соматические клетки с диплоидным набором хромосом. [c.12]

В оплодотворенной клетке — зиготе восстанавливается диплоидный набор хромосом. [c.13]

ДИПЛОИДНЫЙ НАБОР ХРОМОСОМ. Содержит по две копии каждой аутосомы и две половые хромосомы. [c.521]

Мейотический цикл. Мейотическое деление осуществляется в клетках с диплоидным набором хромосом, возникшим в результате оплодотворения, откуда следует, что каждая хромосома в них имеет своего гомолога. При -этом совмещаются процессы, обеспечивающие, с одной стороны, превращение диплоидного ядра (2/г) в гаплоидное п), с другой — рекомбинации генетического материала, обмен участками между гомологичными хромосомами (кроссинговер). [c.107]

В большинстве областей головного мозга клетки являются диплоидными, у человека, в частности, на обеих парах хромосом каждой клетки содержится около 6 пг ДНК, т.е. около 410 2 Д или 610 пар нуклеотидов (н.п.). Общая длина молекул ДНК диплоидного набора хромосом клетки человека близка к 1,5 м. В целой клетке ДНК больше, но ненамного, — за счет митохондриальной ДНК. Это превышение достигает нескольких де- [c.9]

Каждый член множественной серии аллелей может возникнуть из любого другого члена или непосредственно от гена дикого типа. Явление доминирования в множественной серии имеет ту особенность, что каждый из ее членов может полностью или частично подавлять проявление любого другого члена А>а1>а2>аъ или Л в 1953 г. Ховардом и Пелком [6]. Сразу после митоза каждая дочерняя клетка является диплоидной и имеет нормальный набор хромосом (рис. 6). Эта клетка должна пройти так называемую фазу Сь чтобы быть в состоянии удвоить свою ДНК в течение фазы 5 жизненного цикла.. После удвоения ДНК клетка переходит в фазу Ог и находится в тетраплоидном состоянии. В процессе митоза клетка снова делится, причем ее тетраплоидный набора хромосом распределяется поровну между двумя дочерними клетками в результате этого каждая из новых клеток начинает цикл, имея диплоидный набор хромосом. [c.17]

Если некоторые хромосомы окажутся частично гомологичными, значить как 7А- -7В. Нередуцированными называются гаметы,, у такого гибрида могут иметь семь хромосом одного вида и семь другого, т. е. они окажутся нередуцированными, их можно обозначить как 7А+7В. Нередуцированными называются гаметы имеющие полный диплоидный набор хромосом данного вида. Есл г такие нередуцированные гаметы в процессе оплодотворения будут соединяться, то это даст начало организму, имеющему удвоенный набор хромосом обоих видов, т. е. образуется аллотетраплоид,, или амфидиплоид (ААВВ) с 28 хромосомами 14Л+145. Такой 28-хромосомиый амфидиплоид окажется фертильным, так как у него восстановится парность хромосом. В мейозе 14 хромосом вида А будут конъюгировать между собой и образуют семь бивалентов точно так же поведут себя и другие 14 хромосом вида В. [c.240]

Цитологический анализ показал, что у таких нел Смотреть страницы где упоминается термин Диплоидный набор хромосом: [c.236] [c.86] [c.230] [c.28] [c.294] [c.18] [c.77] [c.53] [c.196] [c.258] Генетические исследования (1963) — [ c.314 ]

Химия биологически активных природных соединений (1970) — [ c.11 ]

Жизнь зеленого растения (1983) — [ c.33 , c.34 ]

Биология с общей генетикой (2006) — [ c.34 ]

Диплоидный набор хромосом характерен для. Что такое хромосома. Гаплоидный и диплоидный набор хромосом. Возможные нарушения в кариотипе

У организмов, размножающихся бесполым путем, новое поколение появляется из неспециализированных в отношении генеративной функции клеток тела. В основе их самовоспроизведения лежит митоз, обеспечивающий таким образом сохранение постоянной структуры наследственного материала в ряду поколений не только клеток, но и организмов.

Сравнение первого мейотического (редукционного) деления с митозом:

  • профаза — спирализация хромосом, начало формирования веретена деления; в мейозе, кроме того, происходит конъюгация гомологичных хромосом с образованием бивалентов;
  • метафаза — в митозе в экваториальной плоскости веретена деления располагаются отдельные хромосомы числом 2n, в мейоэе в плоскости экватора выстраивается n бивалеитов;
  • анафаза —в митозе в результате расщепления центромер дочерние хромосомы (бывшие сестринские хроматиды) расходятся к разным полюсам (по 2n к каждому полюсу), в мейозе разрушаются бивалеиты и гомологи расходятся к разным полюсам (по одному из каждой лары); формируется гаплоидный набор хромосом;
  • телофаза—в митозе формируются ядра дочерних клеток, в мейозе телофаза сокращена во времени, так как не происходит полной деспирализации хромосом и клетки сразу переходят ко второму делению.

Результаты митоза — сохранение в дочерних клетках диплоидного набора хромосом (2n2с); результаты первого мейотического деления—образование клеток с гаплоидным набором двунитчатых хромосом (п2с).

При половом размножении процесс воспроизведения организмов осуществляется с участием специализированных половых клеток — гамет, вступающих в оплодотворение. При оплодотворении наследственный материал двух родительских гамет сливается, образуя генотип организма нового поколения — зиготы. Чтобы потомки получили соответствующую программу для развития видовых и индивидуальных характеристик, они должны обладать кариотипом, которым располагало предыдущее поколение. В такой ситуации поддержание постоянства кариотипа в ряду поколений организмов достигается предварительным уменьшением вдвое набора хромосом в гаметах, который восстанавливается до диплоидного при их оплодотворении: n + n = 2n.

Образование гаплоидных гамет осуществляется в ходе гаметогенеза путем особой формы клеточного деления — мейоза. При мейозе из клеток с диплоидным набором In образуются гаметы с гаплоидным набором хромосом n. Такой результат достигается благодаря тому, что после однократного удвоения ДНК клетка делится дважды. В отличие от митоза в первом мейотическом делении в результате конъюгации гомологичные хромосомы объединяются в пары — биваленты. Последующее расхождение гомологов к разным полюсам веретена деления приводит к образованию клеток с гаплоидным набором хромосом: 2n4с → п2с. В ходе второго мейотического деления сестринские хроматиды каждой хромосомы, как и в митозе, распределяются между дочерними клетками с наследственным материалом nс.

Схема второго (эквационного) деления мейоза:

I — клетка, образованная в результате первого мейотического деления и несущая гаплоидный набор двунитчатых хромосом (n2c);

II — клетки, образующиеся после второго деления мейоза и несущие гаплоидный набор однонитчатых хромосом (nc)

Благодаря особенностям мейоза образуются клетки, несущие полноценный геном, в котором каждая группа сцепления представлена в единственном экземпляре (гаплоидный набор хромосом).

При самооплодотворении гаметы одного и того же родителя, а при перекрестном оплодотворении половые клетки разных организмов взаимодействуют друг с другом. Сперматозоиды, проникая в яйцеклетку, вводят в нее свой ядерный наследственный материал, заключенный в гаплоидном наборе хромосом. Ядра гамет сливаются и формируют диплоидное ядро зиготы, в котором каждая группа сцепления представлена в двойном экземпляре — отцовской и материнской хромосомами.

Таким образом, мейоз и последующее оплодотворение обеспечивают сохранение у нового поколения организмов диплоидного кариотипа, присущего всем особям данного вида.

Ссылка на основную публикацию
Adblock
detector